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Abstract. As is well known, the problem of finding a maximum clique in a graph is NP-hard. Never-
theless, NP-hard problems may have easy instances. This paper proposes a new, global optimization
algorithm which tries to exploit favourable data constellations, focussing on the continuous prob-
lem formulation: maximize a quadratic form over the standard simplex. Some general connections
of the latter problem with dynamic principles of evolutionary game theory are established. As an
immediate consequence, one obtains a procedure which consists (a) of an iterative part similar to
interior-path methods based on the so-called replicator dynamics; and (b) a routine to escape from
inefficient, locally optimal solutions. For the special case of finding a maximum clique in a graph
where the quadratic form arises from a regularization of the adjacence matrix, part (b), i.e. escaping
from maximal cliques not of maximal size, is accomplished with block pivoting methods based on
(large) independent sets, i.e. cliques of the complementary graph. A simulation study is included
which indicates that the resulting procedure indeed has some merits.

Key words: indefinite quadratic programming; replicator dynamics; evolutionary game; independent
set

1. Introduction

Denote by #A the number of elements of a finite set A. Consider an undirected
graph G = (V; E) with #V = n vertices. A clique � is a subset of the vertex set V
which corresponds to a complete subgraph of G (i.e., any pair of vertices in � is an
edge in E , the edge set). A clique � is said to be maximal if there is no larger clique
containing �. A (maximal) clique is said to be a maximum clique if it contains most
elements among all cliques. The search for such a maximum clique is an NP-hard
problem, see, e.g. [17]; a comprehensive survey is provided in [25].

Methods termed “continuous-based heuristics” in [14] attack this problem by
considering closely related nonlinear optimization problems. Most of them go back
to the idea of Motzkin and Straus [21] who showed that (1 � f�)�1 is the size
of a maximum clique if f� denotes the optimal objective value of the indefinite
quadratic program (QP)

f(x) = x0AGx! max! subject to x 2 Sn; (1.1)

where AG denotes the adjacency matrix of the graph G; a 0 denotes transposition;
and Sn is the standard simplex in n-dimensional Euclidean space Rn ,

Sn = fx 2 R
n : xi � 0 for all i 2 V; e0x = 1g:
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Here and in the sequel, the letter e is reserved for a vector of appropriate length,
consisting of unit entries exclusively. Note that to improve readability, the letters o
and O (not 0) designate zero vectors and zero matrices of suitable size.

In [24], the Motzkin–Straus approach is used directly in a QP algorithm to
determine maximum clique sizes, and to obtain sharp a priori lower bounds for
this size. However, since the (local) solutions of (1.1) lack strictness, it is difficult
to identify a maximum clique from the optimal objective value f� of (1.1). In [27]
and [15], this point is further elaborated. In particular, strategies are discussed to
avoid spurious solutions to the Motzkin–Straus program (1.1), while [14] deals
with a related approach using optimization of a quadratic function over the positive
part of the Euclidean ball centered at zero with radius 1=

p
k, to determine whether

or not a clique with size at least k exists. The authors of [14] report that good
cliques are obtained by relaxing from positivity, rounding, and estimating k.

In the present paper, we follow a different, evolutionary approach, as such seem-
ingly novel in mathematical programming, but motivated by a textbook exercise
[12, p. 300]. There the regularized version cAG = AG + 1

2In is used instead of AG
in (1.1), where Im denotes the m � m identity matrix. To be more precise, letcAG = [aij ]i;j2V with

aij =

8<:
1
2 if i = j

1 if (i; j) 2 E ,
0 else.

(1.2)

Denote the face of Sn corresponding to a subset � � V of vertices by

S� = fx 2 Sn : xi = 0 if i 62 �g;

its relative interior by

So
� = fy 2 S� : yi > 0 if i 2 �g;

and the barycentre of S� by

b� =
1

#�

X
i2�

ei 2 S� ;

where ei denotes the i-th standard basis vector in Rn , so that the i-th coordinate of
b� is positive if and only if i 2 � , in which case it equals 1=#� . As we will show
in Section 3, x is a local solution to the problem

f̂(x) = x0cAGx! max! subject to x 2 Sn; (1.3)

if and only ifx = b� for some maximal clique�, in which case bf(x) = 1�(2#�)�1.
Hence the maximum clique corresponds to the global maximizer of (1.3). In sharp
contrast to the methods using (1.1), where maximizers are usually not isolated,
which creates difficulties in interpreting the result of a maximization routine in
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terms of cliques, every local solution of (1.3) is isolated, see Section 3. While AG
can be used to obtain a sharp lower a priori bound for the size of the maximum
clique [24, Corollary 1], the same arguments for cAG yield a lower bound which is
not sharp.

The algorithm proposed works also for the more general problem

x0Ax! max! subject to x 2 Sn; (1.4)

where A is an arbitrary symmetric n�n matrix, not necessarily of adjacency form
(1.2). Note that the maximizers of (1.4) remain the same if A is replaced with
A + 
ee0 where 
 is an arbitrary constant. So without loss of generality assume
henceforth that all entries of A are non-negative.

Of course, quadratic optimization problems like (1.4) are NP-hard [17], so it
remains a challenging task to devise algorithms for solving this. The iterative
procedure proposed in this paper consists of two parts. At first, a local solution
of (1.4) will be generated very quickly; in the second step we escape from an
inefficient local maximizer in a way such that improvement in the objective is
guaranteed.

We start studying this general case in Section 2. Section 3 is devoted to the
special case of finding the maximum clique, while in Section 4 some simulations
are presented. In the Appendix, we prove a helpful inequality between powers of
a quadratic form and the quadratic form of the respective power matrix.

2. Evolutionary Approach to Quadratic Programming on the Standard
Simplex

Let us first consider the problem (1.4) of maximizing a general quadratic form
over Sn. Most of the following results seem to be folklore in theoretical biology.
However, the proofs appear to be somehow scattered in the literature, so that for
the convenience of members of the optimization community the most important
arguments will be repeated here in a concise way. To this end, we need some
notions and notations. First consider the generalized Lagrangian L(x;�; �) =
1
2x

0Ax+ �0x+ �(e0x� 1) of problem (1.4) where the multipliers �i (and �) may
have arbitrary sign. A critical point x 2 Sn of the generalized Lagrangian is said
to be a generalized Karush–Kuhn–Tucker point if L(x;�; �) = 1

2x
0Ax; i.e. if

rxL(x;�; �) = o and �0x = 0 for some � 2 R
n ; � 2 R: (2.1)

Now consider the following dynamical systems which operate on Sn:

_xi(t) = xi(t)[(Ax(t))i � x(t)0Ax(t)]; i 2 V; (2.2)

where a dot signifies derivative w.r.t. time t, and a discrete time version

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)0Ax(t)
; i 2 V: (2.3)
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The stationary points under these dynamics, i.e. the points satisfying _xi(t) = 0 for
(2.2) or xi(t+ 1) = xi(t) for (2.3), are the solutions of the equations

xi[(Ax)i � x0Ax] = 0; i 2 V: (2.4)

Hence the stationary points for both dynamics coincide, and it will turn out below
that all local solutions of (1.4) are among these. Of course, there are quite many
stationary points, e.g. all vertices ei of Sn. However, only those which can be
approximated by all nearby starting trajectories are serious candidates for strict
local solutions: a stationary point x is said to be asymptotically stable if every
solution to (2.2) or (2.3) which starts close enough to x, will converge to x as
t%1.

Both (2.2) and (2.3) are called replicator dynamics in theoretical biology, since
they are used to model evolution over time of relative frequencies xi(t) of inter-
acting, self-replicating entities. Interaction is here described by the help of an
n � n-matrix A, which is not necessarily symmetric. The same dynamics arise
in population genetics under the name selection equations where they are used to
model time evolution of haploid genotypes, A being the fitness matrix here which
is always symmetric.

From an optimization point of view, the difference between symmetric and non-
symmetric matrices A is also crucial. Indeed, in the symmetric case the quadratic
form x(t)0Ax(t) is increasing along trajectories of the replicator dynamics (2.2)
and (2.3) – this is the Fundamental Theorem of Selection going back to R. A. Fisher,
J. B. S. Haldane, and S. Wright, see, e.g. [13] or [16].?

THEOREM 1. If A = A0 then the function x(t)0Ax(t) is strictly increasing with
increasing t along any non-stationary trajectory x(t) under (2.2) and (2.3). Fur-
thermore, any such trajectory converges to a stationary point.

Proof. First we deal with the continuous time dynamics (2.2): the time deriva-
tive of the objective is

d

dt
[x(t)0Ax(t)] = 2 _x(t)0Ax(t) =

X
i2V

xi(t)[Ax(t)]
2 � [x(t)0Ax(t)]2

= Varx(t)(f) � 0;

the variance of the quantity fi = [Ax(t)]i if x(t) is interpreted as a probability
distribution overV . Clearly, this variance is zero if and only if fi does not depend on
i almost surely w.r.t. x(t), i.e. if and only if x(t) satisfies (2.4). For dynamics (2.3),
we make use of Lemma 13 – deferred to the Appendix – by choosing m = 3 and

B = [
p
xi(t)aij

q
xj(t)]i;j2V as well as pi =

p
xi(t). Then x(t)0Ax(t) = p0Bp so

? However, this phenomenon is absent if A is not symmetric, which has been interpreted as
supporting individual selection against the questionable theory of group selection in behavioural
sciences.
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that

[x(t)0Ax(t)]3 = [p0Bp]3 � p0B3p =
X
i;j;k;l

xi(t)aijxj(t)ajkxk(t)aklxl(t)

=
X
j;k

xj(t)[Ax(t)]jajkxk(t)[Ax(t)]k

= [x(t)0Ax(t)]2x(t+ 1)0Ax(t+ 1);

whence the desired inequality x(t)0Ax(t) � x(t+ 1)0Ax(t + 1) results. Equality
holds only if xi(t) = 0 or else if [Ax(t)]i does not depend on i, which means that
(2.4) is satisfied by x(t). In [19] it is shown that every trajectory converges to a
stationary point. E

Under replicator dynamics in continuous time, the trajectory approaches its limit
most efficiently in the sense that (2.2) is a gradient system if one uses the (non-
Euclidean) Shahshahani metric [28], which for any point p 2 Sn is defined by

dp(x; y) =
X
i:pi>0

xiyi=pi; x; y 2 Sn:

Note, however, that the limiting stationary point need not be a local solution
of (1.4). This is clear when looking at the vertices of Sn which always constitute
stationary points due to (2.4), or at any other non-minimizing stationary point.
Moreover, there are even non-constant trajectories starting in the relative interior
of sn which end up in a (critical) saddle-point. See phase portrait No. 22 in [3]
where

A =

24 0 0 �1
0 0 1

�1 1 0

35 :
Here, a trajectory in the relative interior exists which converges to x = [1

2 ;
1
2 ; 0]

0.
However, x0Ax = 0 < 6"2 = (x + "u)0A(x + "u) where u = [�2; 1; 1]0, and
x + "u 2 S3 if 0 < " < 1

4 . Hence we need for this (admittedly rare) case an a
priori estimate for the maximum distance by which we could disturb a point like x
without losing too much of the previously obtained improvement, i.e. to obtain a
point nearby an improving stationary point which also improves the objective:

LEMMA 2. For any symmetric n � n matrix A and � � V , denote by �(A�)

the spectral radius of A� , the matrix A restricted to � � �. Assume that z 2 So
�

is a stationary point of (2.2) or (2.3) and let x 2 Sn be an arbitrary point with
" = z0Az�x0Ax > 0. Then any point ~x 2 S� with k~x� zk < p"=�(A�) satisfies
~x0A~x > x0Ax.

Proof. Since both ~x and z belong to S� , we may and do replace A with A�

in the following estimation. Furthermore, due to (2.4) we have ~x0Az = z0Az and
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hence j~x0A~x� z0Azj = j(~x� z)0A(~x� z)j � �(A�)k~x� zk2. Thus

~x0A~x� x0Ax = ~x0A~x� z0Az + z0Az � x0Ax

> �j~x0A~x� x0Axj+ "

� "� k~x� zk2�(A�) > 0;

which shows the assertion. E

Now we provide the main characterization result which links optimization theory
to the qualitative theory of dynamical systems.

THEOREM 3. Let A = A0 be an arbitrary symmetric n� n matrix and x 2 Sn.
Consider the following properties:

(a1) x is an asymptotically stable stationary point of (2.2) and (2.3);
(a2) x is a strict local solution of (1.4);
(b1) x is a stationary point under (2.2) or (2.3), i.e. satisfies (2.4);
(b2) x is a generalized Karush–Kuhn–Tucker point for (1.4).

Then (a1) , (a2) ) (b1) , (b2).
Proof. The implication (a1) ) (b1) is trivial. Hence we only have to show the

equivalences.
(a1) ) (a2): Let x be asymptotically stable and choose a neighbourhood U of

x in Sn such that any trajectory starting in a point y 2 U will converge to x. Then
evidently y0Ay < x0Ax for all y 2 Unfxg due to Theorem 1.

(a2)) (a1): Assume that x is a strict local solution to (1.4). Now put v = x�y

for any y 2 Sn. Since x0Ax� y0Ay can be written as c0v � v0Av with c0v � 0 for
all such v and v0Av < 0 if c0v = 0, straightforward compactness and continuity
arguments entail that there is an " > 0 and a � > 0 such that x0Ax � y0Ay �
�ky � xk if y 2 Sn and ky � xk � ". Choosing � = �" we thus see that the
compact neighbourhood

U" = fy 2 Sn : y0Ay � x0Ax� �; ky � xk � "g
ofx in Sn is forward invariant, since Theorem 1 guarantees y(t)0Ay(t) � y0Ay and
thus ky(t)� xk � " if y(t) starts in y 2 U". Furthermore, Theorem 1 implies that
the limit point z = limt%1 y(t) exists and has to be stationary. But any stationary
point z 2 U" has to satisfy (2.4) and thus x0Ax = z0Ax = x0Az = z0Az if " > 0
is so small that xi > 0 implies yi > 0 for all y 2 U". Therefore x is the only
stationary point in U", and hence the limit point of any trajectory starting in U",
which proves asymptotic stability of x.

(b1)) (b2): sincerxL(x;�; �) = Ax+�+�e and because of (2.4), one may
choose� = (x0Ax)e�Ax and� = �x0Ax in order to satisfy bothrxL(x;��) = o

and L(x;�; �) = 1
2x

0Ax.
(b2) ) (b1): from L(x;�; �) = 1

2x
0Ax it follows �0x = 0 and hence from

rxL(x;�; �) = o we get

0 = x0o = x0Ax+ x0�+ � = x0Ax+ �;
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which entails relation (2.4), using againrxL(x;�; �) = o. E

In order to show finiteness of the complete algorithm presented below we need
some further knowledge which guarantees that jamming cannot occur. To that end
we need an auxiliary result due to Nachbar [23]:

LEMMA 4. Suppose that a trajectory y(t) under (2.2) or (2.3) converges to a point
z 2 Sn as t!1. Then [Az]i � z0Az for all i such that yi(0) > 0.

Proof. Assume that [Az]i > z0Az. Then U = fy 2 Sn : [Ay]i > y0Ayg is
a neighbourhood of z in Sn, and therefore y(t) 2 U for all t � T if T is large
enough. But then yi(t) � yi(T ) > 0 for all t � T irrespective whether y(t) is a
trajectory under (2.2) or (2.3), which follows by _yi(t) > 0 or yi(t+ 1)=yi(t) > 1,
respectively. Hence zi = limt!1 yi(t) > 0, which is absurd in view of (2.4) and
of the fact that z is necessarily a stationary point. E

THEOREM 5. For x 2 Sn let � = fi 2 V : xi > 0g. Assume that x satisfies (a1)
(or (a2), equivalently) of Theorem 3. Then

(a) x0Ax > y0Ay for all y 2 S� with y 6= x;
(b) So

� is contained in the basin of attraction of x.
Proof. (a) For all y 2 S� we have, by (2.4),

y0Ax =
X
i2�

yi[Ax]i = e0y(x0Ax) = x0Ax

and hence y0Ay < x0Ax follows from (a2) by considering the objective of (1 �
�)x+ �y for small � > 0.

(b) Suppose y 2 So
� is the starting point of a trajectory under (2.2) or (2.3).

Theorem 1 tells us that y(t) converges to some point z 2 S�, and hence [Az]i �
z0Az for all i 2 � due to Lemma 4. But then x0Az � z0Az. On the other hand, we
have as in (a) x0Az = z0Ax = x0Ax. Hence property (a) guarantees z = x, which
proves the claimed assertion. E

The algorithm proposed here (a) employs the maximization feature of the replicator
dynamics; and (b) uses an escape procedure described below, if the trajectories are
in the basin of attraction of an inefficient local solution of (1.4). This escape
procedure consists of a finite check for global optimality, and delivers a globally
improving feasible direction, if the current point is not the global solution.

For general non-convex quadratic minimization problems, a global optimality
criterion has been proposed in [4]. This criterion has been used in [7] for an
algorithm to obtain global solutions of the general quadratic problem. However,
here we face the problem (1.4) with a special structure which we can exploit
systematically to facilitate the above mentioned escape procedure.
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THEOREM 6. Suppose that x 2 Sn is a local solution to (1.4), and denote by
� = fi 2 V : xi > 0g the set of its positive coordinates (hence x 2 So

�). Then x is
a global solution of (1.4) if and only if for all i 2 �, the n� n-matrix

Qi = ei(Ax)
0 + (Ax)e0i � xiA (2.5)

is copositive with respect to the polyhedral cone

�i = fv 2 R
n : e0v = 0; vr � 0 if r 62 � and vi=xi � vj=xj for all j 2 �g;

(2.6)

which means that

v0Qiv � 0 for all v 2 �i: (2.7)

If there is a direction v 2 �i such that v0Qiv < 0, then vi < 0 and

~x = x� xi

vi
v 2 Sn

is a strictly improving feasible point.
Proof. see, e.g. [7]. E

While the above result is a specialization of the general criterion for global optimal-
ity in quadratic programming, and as such involves as many copositivity checks
as there are non-binding constraints, it may be interesting to note that due to the
special structures of objective and feasible set, there is a global optimality criterion
which involves only one copositivity check:

THEOREM 7. Let M be a simplicial polytope, i.e. there are some h 2 R
n , 
 > 0,

and an m � n-matrix D such that M = fx 2 R
n : h0x = 
;Dx � og and

� = R+M if � = fv 2 R
n : Dv � og. Assume that x 2 M is a feasible point of

the problem

f(x) = x0Ax! max! subject to x 2M: (2.8)

Then �x is a global solution to (2.8) if and only if

Q�x = f(�x)hh0 � 
2A

is �-copositive. If there is a direction v 2 � such that v0Q�xv < 0, then for some
� > 0, the feasible point ~x = �v 2M improves the objective: f(~x) > f(�x).

Proof. Evident from x0Q�xx = 
2[f(�x)� f(x)]. E

Thus the proposed algorithm runs as follows:
1. Initialisation: put x = 1

ne 2 Sn, or some other point in the relative interior of
Sn if 1

n
e satisfies (2.4);
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2. follow the trajectory y(t) under (2.3) – or under some faster discretization of
(2.2), e.g., that in [10] – starting in y(0) = x for a suitably long time, to obtain
z = limt!1 y(t); denote by " = z0Az� x0Ax > 0 the obtained improvement
and by � = fi : zi > 0g;

3. if z is not asymptotically stable, pick a point ~x 2 S� with kz�~xk � p"=�(A�)

such that the trajectory y(t) starting in ~x converges to the relative boundary
of S� (generically?, a randomly chosen starting point in So

� within this range
will satisfy this with probability one), and go to step 5; else z is asymptotically
stable, i.e. a strict local solution;

4. to check whether or not z is the global solution, apply one of the escape
procedures described in Theorems 6 or 7; if z is inefficient, an improving point
~x is obtained;

5. ~x improves the objective: ~x0A~x > x0Ax, replace x with ~x and go to step 2.

If the effort for all copositivity checks were more or less the same, one should of
course prefer the criterion in Theorem 7. In the following section we shall see why
the method of Theorem 6 may become important for large problems.

THEOREM 8. Assume that all principal minors ofA do not vanish. Then the above
algorithm is almost surely finite in the sense that it uses finitely many steps in which
a particular trajectory of (2.2) is followed.

Proof. See [6]. E

Now let us sketch how to obtain from the preceding findings a global improvement
strategy for general QPs of the form

g(x) =
1
2
x0Ax+ c0x! max! subject to x 2 Sn: (2.9)

Suppose that x is a local solution of (2.9), and we want to improve the current
objective value g(x). Without loss of generality, we may and do assume that
cj > 0, and as above aij > 0 for all i; j. Now consider the problem (1.4), where A
is replaced with the positive matrix

A(x) = A+
2
c0x

cc0;

and denote by g(y : x) = 1
2y
0A(x)y. then of course g(x : x) = g(x) for all

x 2 Sn. Starting with x, employ the algorithm above to obtain a point ~x 2 Sn with
g(~x : x) > g(x : x). Now if c0~x � c0x, then obviously

g(~x) = g(~x : ~x) � g(~x : x) > g(x : x) = g(x);

and we are done. On the other hand, if c0~x > c0x, and if in addition ~x0A~x �
x0Ax, then we are done either since now we obtain directly g(~x) > g(x). But,

? A sufficient condition is that A� is nonsingular [6].
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if unfortunately ~x0A~x < x0Ax, then we can abandon the hope that there is an
improvement possible along the direction of ~x � x. Nevertheless, we can now
consider the problem (1.4) with the originalA, and obtain via the same procedure a
point x̂with x̂0Ax̂ > x0Ax. Joining the points x̂ and ~x by, e.g. a segment or another
path, there thus is a fair chance to obtain an improving point �x which satisfies
g(�x) > g(x). For instance, one can employ a-priori disturbance bounds from x̂ as
in Lemma 2, and proceed similarly for the linear part c0(~x� x). Then any point �x
in the intersection of the resulting discs improves the objective g.

3. Evolution towards the Maximum Clique

Now we adapt the general findings of the preceding section to the maximum clique
problem, where A = cAG is given as in (1.2).

THEOREM 9. Let G be a graph and consider problem (1.3). Then the following
assertions are equivalent:
(a) x = b� = 1

k

P
i2� ei, where � is a maximal clique of size k = #�;

(b) x is an asymptotically stable stationary point of (2.3) and (2.4);
(c) x is a strict local maximizer of x0cAGx over Sn, i.e., a strict local solution to

(1.3).
(d) x is a local maximizer of x0 dAGx over Sn, i.e., a local solution to (1.3).
If one of the above conditions (and therefore all) is met, the objective is x0 dAGx =

1� 1
2k . Hence � is a maximum clique of G if and only if x is the global solution to

(1.3).
Proof. (a) ) (b): if � is a maximal clique, then for all r 2 Vn� we have

(i; r) 62 E for at least one i 2 � and hence

(cAGx)r =
1
k

X
i2�

air �
k � 1
k

:

On the other hand completeness of � yields, denoting by M = f(i; j) 2 � � � :
i 6= jg,

x0cAGx =
1
k2

24X
i2�

1
2
+

X
(i;j)2M

1

35 =
1

2k
+
k � 1
k

= (cAGx)i
for all i 2 �. Now suppose that y 2 Sn satisfies y0cAGx = x0cAGx. Then the strict
inequalities (cAGx)r < x0cAGx for all r 62 � entail yr = 0 for all such r, and hence

x0cAGy = y0cAGx =
X
i

yi(x
0cAGx) = x0cAGx = 1� 1

2k

while the Cauchy–Schwarz inequality yields 1
k2 = (y0x)2 � (y0y)(x0x) = 1

k
(y0y)

and hence

y0cAGy = y0(ee0 � 1
2In)y = 1� 1

2y
0y � 1� 1

2k = x0cAGy
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with equality only if y = x, which means that x is an evolutionarily stable strategy,
the central solution concept of evolutionary game theory. From general principles
in this field it follows that x has to be asymptotically stable; see, e.g. [32].

(b) ) (c) follows from Theorem 3 while (c) ) (d) is trivial.
(d) ) (a): let � = fi 2 V : xi > 0g and suppose that � is not complete,

i.e. there is an edge (i; j) 2 MnE . Then choose a suitably small � > 0 and put
y = x+ �(ei� ej). Due to Theorem 3 we have (cAGx)i = (cAGx)j since both i and
j belong to �. Hence

y0cAGy = x0cAGx+ �2 > x0cAGx;
contradicting local optimality of x. Hence � is complete. Therefore B = ee0� 1

2Ik
if B is the modified adjacency matrix of G� and k = #�. Let p = [xi]i2� .
Then Bp = �e due to (2.4) and Theorem 3. On the other hand e0p = 1 whence
Bp = e� 1

2p results. Therefore p = 1
ke and thus

x =
1
k

X
i2�

ei

as asserted. Now consider a node r 2 Vn�. Since x is a local solution to (1.4)
which has linear constraints, it has to satisfy the Karush–Kuhn–Tucker conditions,
whence

o = rxL(x;�; �) = cAGx+ �+ �e

results. Now �r � 0 and �0x = 0 entails (cAGx)r = ��r � � � �� = x0cAGx. On
the other hand, x0cAGx = 1� 1

2k as established above, and soX
i2�

ari = k(cAGx)r � kx0cAGx = k � 1
2
< k;

which shows that there must be an i 2 � such that (r; i) 62 E . Hence � is a maximal
clique. E

Since every local solution x of (1.3) is strict, there is no problem in identifying the
clique � from x. This is in sharp contrast to the emergence of spurious solutions to
the Motzkin–Straus program (1.1) and thus avoids elaborate strategies to deal with
this nuisance as in [15], [27]. See Section 4 for numerical evidence of this gain in
reliability.

Essentially the same proof shows that a point x 2 So
� is internally stable in

either sense (e.g. is a local maximizer of x0cAGx on S�) if and only if x = b� ,
the barycenter of a face where � is a clique. Furthermore, we can also gain some
additional information if a trajectory stops at the barycenter b� of some face S� ,
even if � is not a clique (note that by Lemma 4, every limit point z of a trajectory
starting in the relative interior of Sn is a Nash strategy, i.e. satisfies [Az]i � z0Az

for all i 2 V):
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THEOREM 10. Suppose � contains at least a clique of size two. Then the following
holds:

(a) The barycenter b� is stationary under (2.2) or (2.3) if and only if the vertices
in � constitute a regular subgraph G� of G;

(b) b� is a Nash strategy if and only if G� is regular but G�[frg is not for all
r 62 � ;?

(c) if b� is the limit point of a trajectory starting in the relative interior of Sn,
then � is either a maximal clique, or can contain subcliques of size at most m

2
if m > 1 is the size of � .

Proof. (a) is evident from (2.4) and the observation that [cAGb� ]i = 1
2m+ 1

md� (i)

for all i 2 � , where

d� (i) =
X

j2�;j 6=i

aij

is the degree of i in G� . Indeed, (2.4) is here equivalent to the requirement that
d� (i) does not depend on i for all i 2 � , which means regularity of G� .

(b) is due to the fact that for any r 62 � , we have

1
m
d� (r) = [cAGb� ]r � b0�

cAGb� =
1

2m
+

1
m
d� (i)

if and only if d� (r) < d� (i) which entails air = 0 for at least one i 2 � . Hence
d�[fmg(i) = d� (i) = d� (j) for all j 2 � . Now if � [ fmg were regular, too, then
this would entail also dd[fmg(j) = d� (j) for all j 2 � , and hence ajr = 0 which
means 0 = d� (r) = d�[fmg(r) = d�[fmg(i) = d� (i) � 1, which is absurd.

(c) is a consequence of Lemma 4 and the result 19. in [2, p. 86]. E

Evidently, Theorem 10 yields together with the preceding remark on internal sta-
bility the assertion of Theorem 9. Let us now shortly discuss the disturbance boundp
"=�(A�) from Lemma 2 used in step 3 of the above algorithm if A = cAG and

z = b� . Then of course G� is a regular graph and P� = (1
2 + d�)

�1A� is a
(doubly) stochastic and symmetric matrix with Perron eigenvector b� . Since both
z and ~x belong to S� , the difference is perpendicular to this eigenvector (indeed,
b0�(~x�z) = 1

k � 1
k = 0), and hence the estimate for the quadratic form in the proof

of Lemma 2 could be improved to

j(~x� z)0A�(~x� z)j � j�2(P�)j(1
2 + d�)k~x� zk2;

where �2(P�) denotes the eigenvalue of P� with largest modulus smaller than one,
i.e.

j�i(P�)j � j�2(P�)j < 1 for all eigenvalues �i(P�) 6= 1:

Since P� is the transition matrix of a ergodic reversible Markov chain, several
estimates for j�2(P�)j can be obtained, see, e.g. [29], [30, pp. 46f.], and references

? If both G� and G
�[frg are regular, both � and � [ frg are cliques.
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therein. Now suppose that we have arrived at a maximal clique � of size k. At first
we remove all nodes of degree less than k. If less than k + 1 nodes have at least
degree k, stop: � is the maximum clique. Else one has to apply one of the escape
procedures. For instance, we can make use of both auxiliary problems (1.1) and
(1.4) to arrive at the following application of Theorem 7 to the maximum clique
problem:

THEOREM 11. Let � be a maximal clique of size k. Then the following assertions
are equivalent:

(a) � is a maximum clique;
(b) Qk = (2k � 1)ee0 � 2kAG is Rn+ -copositive;
(c) Rk = (k � 1)ee0 � kAG is Rn+ -copositive.
Proof. For M = Sn we have h = e; 
 = 1; and D = In as well as � = R

n ,
in the notation of Theorem 7. Now observe that with f(x) = x0cAGx, we have for
�x = b� the objective value f(�x) = (1� 1

2k ) and hence

Q�x =

�
1� 1

2k

�
ee0 � cAG =

�
1
2
� 1

2k

�
ee0 �AG =

1
2k

Qk;

while for f(x) = x0AGx we get similarly Q�x = 1
kRk. E

Checking copositivity is NP-hard. Of course, one can apply the full arsenal of
shortcut methods as described in [5, section 4] to obtain an improvement efficiently,
or else to establish global optimality. Unfortunately, neither Qk nor Rk have any
negative definite principal submatrices, so one cannot hope for essential reduction
of the number of emerging subproblems if one follows a block pivoting strategy
as in [5].

This, however is possible in choosing the criterion of Theorem 6, exploiting the
special structure of (1.3) in an efficient way. Interestingly enough, this approach is
in some sense counter-greedy: indeed, it rests on the use of independent sets, i.e.
cliques of the complementary graph G with regularized adjacency matrix cAG =

ee0 � cAG . The reason for this phenomenon is that any principal submatrix of cAG
is indefinite unless it belongs to an independent set when it coincides with 1

2Im
where m is the size of the independent set.

Hence, given a maximal clique � of size k, search for a maximal independent
set � � Vn�, by applying the previous procedure to the corresponding submatrix
of ee0 � cAG . (If � is a singleton, then the complement of � is also a clique, and we
may replace � with its complement if the latter has more members; in these cases
the block pivoting algorithm reduces to an ordinary pivoting step.)

We will now show that, unlike the general case treated in [5], block pivoting
by means of a maximal independent set yields only a moderate number (namely
m + 1) of generated subproblems detecting copositivity of considerably smaller
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matrices. To this end, we need some more notation. Partition the matrices Qi from
(2.5) with A = cAG and x = b� according to the sets � and Vn� as follows:

Qi =

"
A
(�)
i B

(�)
i

[B
(�)
i ]0 C

(�)
i

#
:

For j 2 � denote by r0j the j-th row of B(�)
i . We also introduce the square matrices

of order n�m

Q
(�)
i;j =

(
C
(�)
i ; if j = 0;

C
(�)
i � er0j � rje

0 � 1
2mee

0; if j 2 � .

Finally, put

�
(�)
i = fz 2 R

Vn� : e0z � 0; z` � 0 if ` 62 �; zi � zj if j 2 �g;
as well as

�
(�)
i;j =

(
fz 2 �

(�)
i : e0z = 0 and B(�)

i z � 0g; if j = 0,

fz 2 �
(�)
i : r0sz � r0jz +

1
2me

0z for all s 2 �g; if j 2 � .

THEOREM 12. Suppose that � is a maximal clique of size k and that every node
has at least degreek. Pick a (disjoint) maximal independent set � of sizem � n�k.
Then Qi is copositive w.r.t. the cone �i (2.6) if and only if the following m + 1
copositivity conditions on square matrices of order n�m are satisfied:

Q
(�)
i;j is �

(�)
i;j -copositive for all j 2 � [ f0g:

Moreover, in the negative case we obtain the following improving feasible direction
(cf. Theorem 6):

(a) If z 2 �
(�)
i;0 satisfies z0Q(�)

i;0 z < 0, then v = [
o
z
] 2 �i satisfies v0Qiv < 0;

(b) If z 2 �
(�)
i;j satisfies z0Q

(�)
i;j z < 0 for some j 2 � , then v 2 R

n with
coordinates

vs =

8<:
�e0z; if s = j,
0; if s 2 �nfjg,
zs; if s 2 Vn� .

satisfies v 2 �i and v0Qiv < 0.
Proof. First note that under the assumptions of the theorem, (2.5) entails that

A
(�)
i = � 1

2kIm is negative definite, so that Theorem 6 and Remark 6 in [5] apply
to Qi instead of Q, and �i instead of �. So without loss of generality, let us assume
for the moment that � = f1; . . . ;mg; that i = n and that � = fn� k + 1; . . . ; ng.
Then (2.6) with x = b� tells us that �i = fv 2 R

n : Div � og with

Di =

2664
e0 j e0

�e0 j �e0
Im j O

O j R

3775 = [EjF ]
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whereO denote zero matrices of suitable size, andR is the (n�m�1)� (n�m)-
matrix

R =

�
In�m�k j O j o

O j Ik�1 j �e
�
:

Recall that e here is generic notation for vectors, consisting of unit entries, of
(possibly) different length. The partition of Di into the (n+ 1)�m-matrix E and
the (n+ 1)� (n�m)-matrixF corresponds to the indices belonging to � , or Vn� ,
respectively. First note that Ew � o trivially implies w = o, so that the cone �0

in Theorem 6 of [5] is trivial. Hence we can concentrate on condition (b) of that
theorem. Now for any list I of row indices and its complementJ = f1; . . . ; n+1gnI
partition E and F accordingly:

E =

�
EI

EJ

�
and F =

�
FI

FJ

�
:

Next we have to identify the system

I� = fI � f1; . . . ; n+ 1g : EI is square and nonsingularg:
Suppose I 2 I�. Obviously, I contains no index exceeding m+ 2. Furthermore,
either I = f3; . . . ;mg (this is Case (0) below); or I contains exactly one of the
indices f1; 2g corresponding to �e0. We distinguish Case (+) where 1 2 I , and
Case (�) where 2 2 I . In either of the Cases (�), there is exactly one j 2 �nI .
For all cases, we now calculate ��I and Q�I .

Case (0). HereEI = Im, FI = O whileEJ = [ej�ejO]0 andFJ = [ej�ejR0]0.
Hence Q�I = C

(�)
i = Q

(�)
i;0 and

��I = fz 2 R
Vn� : B(�)

i z � 0 and FJz � og:
But since FJz � o is equivalent to e0z = 0 and Rz � o we by definition of R
arrive at ��I = �

(�)
i;0 .

Case (+). Denote by j 2 � the index of the row not occurring in EI , and by
Pj the (symmetric, involutive) m�m permutation matrix which interchanges the
first and the j-th column of a matrix if postmultiplied. Of course premultiplication
does the same with rows so that, e.g., r0j = e01PjB

(�)
i if e01 = [1; 0; . . . ; 0]. Then we

have

EI =

�
1 j e0

o j Im�1

�
Pj and FI =

�
e0

O

�
while

EJ =

24�e0e01
O

35Pj and FJ =

24�e0o0

R

35 :
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Straightforward calculations then yield E�1
I FI = Pj [

e0

O ] so that

Q�I = C
(�)
i � [ejO]PjB

(�)
i � [B

(�)
i ]0Pj

�
e0

O

�
� 1

2k
[ejO]

�
e0

O

�
= Q

(�)
i;j

and ��I = fz 2 R
Vn� : GIz � o and HIz � og with

GI = (E0
I)
�1
�
B
(�)
i +

1
2k

E�1
I FI

�
=

�
1 j o0

�e j Ik�1

�
PjB

(�)
i +

1
2k

�
1 j o0

�e j Ik�1

� �
e0

O

�
=

�
1 j o0

�e j Im�1

�
PjB

(�)
i +

1
2k

�
e0

�ee0
�

and

HI = FJ �EJE
�1
I FI =

24�e0o0

R

35�
24�e0e01
O

35 � e0
O

�
=

24 o0

�e0
R

35
wherefrom one can easily deduce that

��I =

�
z 2 �

(�)
i;j : r0jz +

1
2k

e0z � 0
�
:

Case (�). Now

EI =

��1 j �e0
o j Im�1

�
Pj and FI =

��e0
O

�
; hence again

E�1
I FI = Pj

�
e0

O

�
while

EJ =

24 e0e01
O

35Pj and FJ =

24 e0o0
R

35 :
As in Case (+) one obtains also in this case Q�I = Q

(�)
i;j but now

��I =

�
z 2 �

(�)
i;j : r0jz +

1
2k

e0z � 0
�
:

For fixed j 2 � 62 I , one thus can merge both cases into one copositivity condition,
namely thatQ(�)

i;j be�(�)i;j -copositive. Therefore Theorem 6 of [5] yields the claimed
characterization of �i-copositivity of Qi. Also assertions (a) and (b) follow from
(b2) of that theorem. E
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Table I. Comparison of replicator dynamics based on Comtet versus
Motzkin and Straus.

Result/density 0.1 0.75 0.5 0.75 0.9 total

Comtet better 74 71 64 54 67 330
same clique size 40 25 36 29 26 156
Motzkin–Straus better 26 44 40 57 46 213
Comtet fails 0 0 1 1 3� 5
Motzkin–Straus fails 55 61 50 29 16� 211

�: one case where both fail is not included. See text.

Note that unlike the general case treated in [5], block pivoting by means of a
maximal independent set yields only a moderate number (namely m+ 1) of gen-
erated subproblems detecting copositivity of considerably smaller matrices. These
observations seem to justify the hope that the proposed procedure has indeed some
merits, which is supported also by first, very encouraging empirical evidence. This
is the subject of the next section.

4. Empirical Findings

Recently, Pelillo [26] has performed extensive simulation to assess the quality of a
very similar approach, namely to employ replicator dynamics (2.3) with A = AG
instead of A = cAG . Interestingly enough, this optimization model emerged as
a special relaxation labeling network, a parallel distributed computational model
extremely popular in computer vision and pattern recognition. In the first part of
[26], 3100 randomly generated graphs with up to n = 500 nodes were considered
and the performance of local optimization of (1.1) by following the paths of (2.3)
was compared to well-known exact clique finding algorithms, the backtracking
procedure by Bron and Kerbosch [9], and the partially enumerative algorithm by
Callaghan and Pardalos [11]. With the exception of dense graphs of order exceeding
n = 100 where the latter methods have been excessively slow, Pelillo reported quite
satisfying results both on quality and speed of his algorithm (see Tables I through
III in [26]), although he stresses again the problem of spurious solutions to the
Motzkin–Straus program.

Hence in a first attempt to assess the properties of the Comtet-based algorithm
proposed here we investigated the behaviour of this and Pelillo’s path-following
methods on a total of 700 randomly generated graphs of order n = 10 up to
n = 500 with varying expected density � = 0:1; 0.25; 0.5; 0.75; and 0.9. Both
dynamical systems have been iterated equally long, and the results are shown in
Table I. The resulting points were used to extract subsets of vertices in the same way
as in Section 3 above, and if this is not a clique, a failure is reported. Superiority is
measured by sizes of the cliques found.
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Summarizing Table I, one finds that replicator dynamics based on Comtet is
beaten by that based on Motzkin and Straus in only 30% of the cases, but is
more reliable by far, since it cannot produce spurious solutions. This may be
seen as an indication that the positive features of the Motzkin–Straus program as
reported in [26] a fortiori carry over to the Comtet program. Interestingly, only
in very small (and sparse) graphs and very rarely, identical cliques have been
produced by both algorithms (a total of 26), as opposed to the number of cases
(156) where both clique sizes are the same. As this is the only feature where the
order matters, it is more transparent to show the figures aggregated over the orders
(n = 10; 20; . . . ; 100; 200; . . . ; 500) in Table I.

Increasing the number of iterations in case of n = 75, as a moderate order
example, seems to have no effect to remove the occurrence of spurious solutions to
the Motzkin–Straus program while reliability of Comtet-based replicator approach
is increased. This observation backs the conjecture expressed as the end of [26],
and it seems that while this study has been performed in ignorance of that article,
the Comtet regularization indeed provides the proper penalty term addressed in
[26] to remove the nuisance of spurious solutions. For each density as in Table I,
ten randomly drawn graphs of order n = 75 were investigated. The asymptotic
maximum clique size in a graph with n nodes and expected density � is determined
by Matula’s formula

M(n; �) = 2 log1=� n� 2 log1=� log1=� n+ 2 log1=�
e

2
+ 1:

As n gets large, the probability that maximum clique size takes the two nearest
integer neighbours of M(n; �) tends to one [18], [2]. However, one has to be
aware of the caveats expressed by [18] with regard to high density graphs. Both
algorithms have been iterated 500 times, a number far beyond the median number
of iterations required as reported in [26]. The results are contained in Table II. Still
10% failures occurred with the Motzkin–Straus program as opposed to none with
the Comtet approach, indicating that not only numerical reasons are responsible
for this behaviour. As a rough quality measure, the sizes of cliques found were
divided by the number of cases where no failure occurred, and still these averages
do not differ too much from each other.

To obtain an absolute picture, a larger simulation study has been performed. A
total of 4000 randomly drawn graphs were investigated by the packageMathematica
[33], using the built-in routine MaximumClique [31], a straight forward enumer-
ative procedure which becomes prohibitively slow for dense graphs with order
exceeding n = 17. Thus we generated 100 graphs of each order from n = 10 to
n = 17, with the same expected densities as in Table I. The results are reported
in Table III, where ineff counts the cases where a clique is returned which does
not have maximal size (note that the proposed algorithm never failed to produce a
clique!); ave.clique size refers to the average size of the maximum clique; and time
is a discretized indicator of relative CPU time effort compared to Mathematica’s
routine MaximumClique, which is obtained in the following way: let q denote the
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Table II. Average clique sizes relative to the number of cliques found:
Comtet versus Motzkin and Straus. See text.

Result/density 0.1 0.25 0.5 0.75 0.9

Comtet better 1 3 3 3 6
same clique size 7 5 4 4 1
Motzkin/Straus better 2 2 3 3 3
Ave.clique size (Comtet) 3.00 4.20 6.60 11.5 21.0
Ave.cl.size (Motzkin/Straus) 3.11 4.37 6.86 11.6 15.1
Asympt.max.clique size 4.47 6.03 9.07 14.3 18.3

Table III. Performance of replicator dynamics based on Comtet. Format of main entries:
ineff/ave.clique size/time. See text.

nodes/density 0.1 0.25 0.5 0.75 0.9 tot.escape steps

10 0/2.06/�3 1/2.74/�1 1/3.83/�1 2/5.62/�0 0/7.26/�1 24
11 0/2.20/�3 3/2.95/�1 0/4.19/+0 1/5.81/+0 1/8.02/�0 39
12 0/2.17/�2 2/2.98/�1 0/4.32/+0 1/6.21/+1 1/8.58/+0 37
13 0/2.18/�2 2/3.11/�2 0/4.40/+1 1/6.58/+1 0/8.87/+1 47
14 1/2.28/�2 3/3.16/�0 1/4.83/+1 1/6.89/+1 2/9.49/+1 68
15 1/2.37/�1 1/3.23/�0 3/4.85/+1 1/7.14/+2 2/9.75/+1 78
16 2/2.36/�1 4/3.30/+0 3/4.80/+2 5/7.38/+3 1/10.6/+2 100
17 4/2.47/�1 2/3.36/+1 6/5.01/+3 4/7.66/+3 2/10.8/+3 115

tot.escape steps 64 111 140 135 58 508

ratio of the average time consumed when running our algorithm (150 iterations) in
the way described above, with the escape step replaced by simply removing one
element from a non-maximum clique after another from the graph and restarting the
procedure, divided by the average time used by MaximumClique. Then the values
of +3;+2;+1;+0;�0;�1;�2;�3 are returned whenever q falls into the ranges
with the following boundaries: 0; 0.05; 0.1; 0.5; 1; 2; 10; 20;1.

Apart from the obvious advantage as far as time is concerned, Table III suggests
that the problematic densities where no global minimum is encountered during
the first local search, are indeed 0.5 and 0.75, in which cases the comparison
between Comtet and Motzkin–Straus-based algorithm is not so clear in Tables I
and II. So there is even more hope to increase efficiency with the implementation
of the copositivity checking devices described in the previous section. Note that
a maximum clique has not been detected in mere 1.6% of the cases. Of course,
a large simulation study and detailed comparisons are necessary to establish the
algorithm for practical purposes, especially in view of recent DIMACS challenges
(cf. [14]). First experiences with this project (without an escape step) are reported
in [8].
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Appendix: Lemma 13

If B is a positive symmetric (n � n) matrix and p is a non-negative vector with
kpk2 =

P
i p

2
i = 1, then for any positive integer m we have

[p0Bp]m � p0Bmp:

Equality obtains if and only if p is the (unique) eigenvector of B belonging to the
dominating eigenvalue.

Proof. We proceed by induction on n, the order of B. Denote by �1; . . . ; �n
the eigenvalues of B. Due to Perron’s theorem [1, p. 278], there is a positive,
dominating eigenvalue with multiplicity one, �1 say, with a positive eigenvector
w1. Let u = [u1; . . . ; un]0 denote the coordinates of p in the orthonormal basis
w1; . . . ; wn of eigenvectors of B, put vi = u2

i , and define T (v) =
Pn

i=1
p
viwi.

Then T maps the standard simplex Sn continuously in the unit sphere in Rn , and
the region R = fv 2 Sn : T (v) � og is contained in the polytope P = fv 2 Sn :
a01v � 0g, where ak = [�k1 ; . . . ; �kn]

0 2 R
n for any positive integer k. Indeed, for

any such k we have a0kv =
P

i �
k
i u

2
i = p0Bkp > 0 if T (v) = p � o and u2

i = vi.
Now denote by

f(v) = a0mv � [a01v]
m = p0Bmp� [p0Bp]

m;

and consider the problem to minimize f over R. Since D2
vf(v) = �m(m �

1)[a01v]
m�2a1a

0
1, f is concave on the polytope P , thus it is also concave on the

region R. Now consider any p in the image of R under T , i.e. T (v) = p � o,
which does not coincide with the strictly positive eigenvectorw1 corresponding to
the Perron eigenvalue �1. Then necessarily v 6= z = [1; 0; . . . ; 0]0. The ray through
v emanating from z hits the boundary of Sn in a point ~v which satisfies ~v1 = 0
and hence ~p = T (~v) =

Pn
i=2
p
~viwi is perpendicular to w1. Hence ~p must have

a negative coordinate and thus does not belong to the non-negative orthant, i.e.
~v 62 R. For continuity reasons, there has to be a point �v 2 R on the ray such that v
is a convex combination of z and �v; and that �p = T (�v) is on the boundary of the
non-negative orthant, i.e. �pj � 0 and (w.l.o.g.) �p1 = 0. From concavity of f on R
we conclude f(v) � maxff(z); f(�v)g = maxf0; f(�v)g. Partitioning

B =

�
� j q0

q j C

�
and Bm =

�
�m j q0m
qm j Cm

�
;

where C and Cm are square matrices of order n � 1, we immediately see from
strict positivity of B that all entries of Cm exceed those of the power matrix Cm,
so that putting y = [�p2; . . . ; �pn] 2 R

n�1 we arrive at

f(�v) = �v0Bm�v � [�v0B�v]m = y0Cmy � [y0Cy]m > y0Cmy � [y0Cy]m � 0
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by induction hypothesis. Hence any such p = T (v) 2 T (R) satisfies f(v) > 0. Of
course one cannot be sure that T maps R onto S+, the intersection of the unit ball
with the non-negative orthant, but the same reasoning applies to any map Ts of the
form Ts(v) =

Pn
i=1 si

p
viwi where s = [s1; . . . ; sn]0 is an arbitrary sequence of

signs. The assertion of the lemma then follows from the fact that p0Bkp = a0kv if
Ts(v) = p and S+ �

S
s2f�1;1gn Ts(P ). E

The above method of proof differs from that in [22]. for instance, here it is
immediately evident that the sign restriction on p can be dispensed with if m is
even, or if B is a positive semidefinite matrix with entries of arbitrary sign. Indeed,
in these cases f is concave on the whole of Sn, and therefore attains its minimal
value at the vertices, where it has value zero, so that the inequality of Lemma 13
holds for all p with p0p = 1. Note further that for establishing the inequality of
Lemma 13, symmetry ofB is not required, since only quadratic forms are involved.
The uniqueness result then refers to p being the Perron eigenvector of B + B0.
Hence Lemma 13 bears some similarity with the result of Loewy and London [20,
p. 179] which in the above terminology would read f( 1

n
e) � 0.
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